厚朴酚抑制异丙酚葡萄糖醛酸转移代谢的组织差异研究

肖玲, 吴彦, 朱亮亮

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (18) : 1596-1599.

PDF(747 KB)
PDF(747 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (18) : 1596-1599. DOI: 10.11669/cpj.2016.18.013
论著

厚朴酚抑制异丙酚葡萄糖醛酸转移代谢的组织差异研究

  • 肖玲a, 吴彦b, 朱亮亮b*
作者信息 +

Tissue Related Differences with Inhibition of Magnolol on Propofol Glucuronidation

  • XIAO Linga, WU Yanb, ZHU Liang-liangb*
Author information +
文章历史 +

摘要

目的 为了评价含厚朴酚的中药干预异丙酚在人体内代谢的风险。方法 在人肠、肝、肾微粒体体系中,通过动力学分析的方法,在体外探讨了厚朴酚对各微粒体催化异丙酚葡萄糖醛酸转移代谢活性的抑制能力。结果 厚朴酚能显著抑制异丙酚在人肝、肾微粒体中的葡萄糖醛酸结合代谢反应,抑制过程均遵循混合抑制动力学模型,抑制常数Ki分别为0.1和0.2 μmol·L-1。与人肝、肾微粒体不同,人肠微粒体中异丙酚的葡萄糖醛酸结合代谢不受厚朴酚的影响。结论 含厚朴酚的中药,在人整体水平上难以抑制异丙酚葡萄糖醛酸结合代谢路径。

Abstract

OBJECTIVE To investigate the risk of magnolol interfering into propofol glucuronidation in human.METHODS This study was performed in pooled microsomes from human liver, intestine and kidney (HLM, HIM, HKM, respectively). Kinetic analyses were conducted to gain the inhibition potentials of magnolol against propofol glucuronidation in HLM, HIM, and HKM.RESULTS Magnolol can potently inhibit propofol glucuronidation in HLM and HKM, following mixed inhibition kinetics with Ki values of 0.1 and 0.2 μmol·L-1, respectively. Different from HLM and HKM, propofol glucuronidation in HIM was not affected by the presence magnolol. CONCLUSION Magnolol is hardly to depress systemic propofol glucuronidation due to lack of inhibition of the intestinal metabolic pathway.

关键词

厚朴酚 / 异丙酚 / 葡萄糖醛酸结合代谢 / 抑制作用

Key words

magnolol / propofol / glucurondation metabolism / inhibitory effect

引用本文

导出引用
肖玲, 吴彦, 朱亮亮. 厚朴酚抑制异丙酚葡萄糖醛酸转移代谢的组织差异研究[J]. 中国药学杂志, 2016, 51(18): 1596-1599 https://doi.org/10.11669/cpj.2016.18.013
XIAO Ling, WU Yan, ZHU Liang-liang. Tissue Related Differences with Inhibition of Magnolol on Propofol Glucuronidation[J]. Chinese Pharmaceutical Journal, 2016, 51(18): 1596-1599 https://doi.org/10.11669/cpj.2016.18.013
中图分类号: R969.1   

参考文献

[1] SOARS M G, PETULLO D M, ECKSTEIN J A, et al. An assessment of udp-glucuronosyltransferase induction using primary human hepatocytes [J].Drug Metab Dispos, 2004, 32(1):140-148.
[2] FAKHRUDIN N, LADURNER A, ATANASOV A G, et al. Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma [J]. Mol Pharmacol, 2010, 77(4):559-566.
[3] YIN Q L, LIU Y, HAN N Y, et al.Evaluation of the antimicrobial properties of magnoliae officinalis cortex extract and its main components against four oral pathogenic bacteria[J].Chin Pharm J (中国药学杂志),2011,46 (17): 1356-1361.
[4] TODO K, CUI C B.Pharmacological effecs of mangnolia officinalis constituents [J]. Chin Pharm J(中国药学杂志),1985,20 (9): 522-524
[5] ZHU L, GE G, ZHANG H, et al. Characterization of hepatic and intestinal glucuronidation of magnolol: application of the relative activity factor approach to decipher the contributions of multiple UDP-glucuronosyltransferase isoforms [J]. Drug Metab Dispos, 2012, 40(3):529-538.
[6] ZHU L, GE G, LIU Y, et al. Potent and selective inhibition of magnolol on catalytic activities of UGT1A7 and 1A9 [J]. Xenobiotica, 2012, 42(10):1001-1008.
[7] SATO Y, NAGATA M, TETSUKA K, et al. Optimized methods for targeted peptide-based quantification of human uridine 5'-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography-tandem mass spectrometry [J]. Drug Metab Dispos, 2014, 42(5):885-889.
[8] LIANG S C, GE G B, LIU H X, et al. Determination of propofol UDP-glucuronosyltransferase (UGT) activities in hepatic microsomes from different species by UFLC-ESI-MS [J]. J Pharm Biomed Anal,2011,54(1): 236-241.
[9] JIANG Y Z, WEI D, WANG S M, et al. Effects of houpu-zhi-shi-tang on 57 non-gastrointestinal surgery patients [J]. Chin J Clin Pract Med(中华临床医药杂志),2004,18:101-102.
[10] HOMMA M, OKA K, KOBAYASHI H, et al. Liquid chromatographic determination of magnolol in urine collected from volunteers after a single dose of saiboku-to, an oriental herbal medicine for bronchial asthma [J]. J Pharm Pharmacol,1993,45(9):839-841.
[11] MUKAI M, TANAKA S, YAMAMOTO K, et al. In vitro glucuronidation of propofol in microsomal fractions from human liver, intestine and kidney: tissue distribution and physiological role of UGT1A9 [J]. Pharmazie, 2014, 69(11):829-832.
[12] COURT M H, ZHANG X, DING X, et al. Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues [J].Xenobiotica,2012,42(3):266-277.
[13] TAKATA K, KURITA T, MORISHIMA Y, et al. Do the kidneys contribute to propofol elimination? [J]. Br J Anaesth,2008,101(5):648-652.
[14] MURAYAMA T, SATO Y, WAINAI T, et al.Effect of continuous infusion of propofol on its concentration in blood with and without the liver in pigs [J]. Transplant Proc, 2005, 37(10):4567-4570.
[15] OHNO S, NAKAJIN S.Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction [J].Drug Metab Dispos, 2009, 37(1):32-40.

基金

国家自然科学基金资助项目(81503151);安徽省教育厅自然科学研究基金资助项目(AQKJ2014B007,AQKJ2015B020)
PDF(747 KB)

Accesses

Citation

Detail

段落导航
相关文章

/